ICE CORE RECONSTRUCTION OF ANTARCTIC CLIMATE CHANGE AND IMPLICATIONS

RECONSTRUCCIÓN DEL CAMBIO CLIMÁTICO EN ANTÁRTICA Y SUS REPERCUSIONES BASADOS EN TESTIGOS DE HIELO

Paul Andrew Mayewski1

RESUMEN

La Antártica es la biblioteca medio ambiental de testigos de hielo más grande del planeta. Algunos ejemplos de los hallazgos científicos del consorcio de 21 países llamado la Expedición Científica Internacional Trans Antártica (ITASE) bajo los auspicios del Comité Científico de Investigaciones Antárticas (SCAR) se presentan con especial énfasis en el valor de estos registros en la reconstrucción de la circulación atmosférica sobre la Antártica y el Océano Austral.

Palabras clave: Antártica, Océano Austral, testigos de hielo, cambio climático, ITASE, SCAR.

ABSTRACT

Antarctica is the Earth’s largest environmental library for ice cores. Examples of the scientific findings of the 21-nation consortium called the International Trans Antarctic Scientific Expedition (ITASE) under the auspices of the Scientific Committee for Antarctic Research (SCAR) are presented with special emphasis on the value of these records in reconstructing atmospheric circulation over Antarctica and the Southern Ocean.

Key words: Antarctica, Southern Ocean, ice cores, climate change, ITASE, SCAR.

1 Climate Change Institute, University of Maine, USA.
INTRODUCTION

Antarctica plays a critical role in the dynamic linkages that couple the spatially and temporally complex components of the Earth’s system (atmosphere, biosphere, anthrosphere, hydrosphere, cryosphere, lithosphere and cosmogenic input). However, our knowledge of the functioning of Antarctica within the global system and the spatial and temporal complexity of Antarctic climate is poor, largely due to the limitations and the short period (typically 30-50 years) of observational and instrumental data on Antarctic climatic variables. Further, Antarctica exhibits significant regional contrasts, including decoupling of climate change on decadal scales between different parts of the continent. Large areas of the interior of the ice sheet are influenced by the continental temperature inversion while other portions of the interior and the coastal regions are influenced by the incursion of cyclonic systems that circle the continent. As a consequence these coastal regions are mainly connected with lower tropospheric transport whereas high altitude regions in the interior are more likely influenced by vertical transport from the upper troposphere and stratosphere. As a result the coastal regions experience higher climatic variability than regions in the interior. Further, high frequency climatic changes impact both Antarctica and the surrounding Southern Ocean. Some may be related to the El Niño Southern Oscillation (ENSO) and other local to regional to global scale climate features such as: atmospheric blocking, sea-ice variations and volcanic event induced atmospheric shielding.

Ice cores can provide robust reconstructions of basic boundary conditions (e.g., sea surface temperature, precipitation and atmospheric circulation patterns) necessary for robust environmental reconstructions. Along with other high-resolution paleo-records, ice core records provide detailed descriptions of climate change that are extremely valuable for comparison with modern observations. Further, they document not only a wide range of environmental parameters that are both measures of and responses to climate change (e.g., atmospheric chemistry and circulation, temperature, precipitation) but also many of the causes of climate change (e.g., solar variability, volcanic activity, greenhouse gases). Because of their potential resolution (sub-annual), length (several glacial cycles) and in some cases precise dating (sub-annual) they also provide a framework for relating other records of past climate. Over time periods longer than the instrumental era ice core studies demonstrate that Antarctica experienced millennial to decadal scale climatic variability that is associated with significant changes in temperature, snow accumulation, wind-blown dust, sea-salt loading and greenhouse gas composition.

The International Trans Antarctic Scientific Expedition (ITASE) is a multi-national, multi-disciplinary field research program with the broad aim of understanding the recent environmental history of Antarctica. ITASE is organized under the auspices of SCAR and now comprises twenty-one countries. An emerging compilation of all ITASE and other ice core sites is available through Ice READER (http://www.icereader.org/) and summaries of ITASE national products are available through (http://www2.umaine.edu/itase/content/nationals/index.html).

International ITASE representatives have met several times in the past to: discuss national traverse plans; coordinate efforts; synthesize results; develop statistical techniques for interpretation; and interact with the broader scientific community. These all-ITASE meetings started with a workshop that led to the development of an international Science and Implementation Plan for ITASE (Mayewski and Goodwin, 1997) followed by meetings in Durham, New Hampshire (1999), Potsdam, Germany (2002), Milan, Italy (2003), Hobart, Australia (2006), and in 2008 an NSF-SCAR sponsored workshop in Maine, USA. These meetings have provided an important opportunity for ITASE researchers to meet and exchange information.

Primary ITASE emphasis is placed on the last ~200 years of the record although many ITASE projects have sampled significantly longer periods of 1000+ years. The minimum ~200 year time period was selected because it covers the onset of major anthropogenic influence on the atmosphere and the end of the Little Ice Age. Further, the Tambora volcanic eruption (AD 1815) and other volcanic events provide an excellent absolute marker for age calibration of these records. In addition, overland snow traverse programs can logistically handle the collection and transport of multiple 200-year long ice cores.
Since 1999, US ITASE has traversed >10,000 km throughout West and East Antarctica (Fig. 1) and collected a total of 3945m of ice cores. Together with six shallow cores collected in conjunction with the Long Ground Traverse, US ITASE has conducted scientific investigations (ice coring, surface glaciology, radar) at 45 sites and radar (crevasse, shallow, and deep) along almost the entire >10,000 km route. US ITASE has focused on sampling the ice climate record surrounding the Ross Ice Shelf and hundreds of km inland. US ITASE has now completed six field seasons of multi-disciplinary research setting a new benchmark for Antarctic climate multi-disciplinary research.

SUMMARY OF RESULTS

ITASE findings are published in well over 150 peer-reviewed publications (see summaries in Mayewski (2003, 2006) and Mayewski et al. (2006). Examples, arranged by area of scientific contribution, are listed below:


- Precise annual layer counting of ice cores resulting in estimates of past mass balance, identification of moisture source regions, and environmental interpretations (e.g. Kaspari et al. 2004; Kaspari et al. 2005; Dixon et al. 2004; Spikes et al. 2004; Steig et al. 2006).

- Direct linkage between ice core glaciochemical markers and shallow and deep radar reflectors, demonstrating that the latter are isochrones and therefore yield 3-D mass balance reconstructions (e.g. Spikes et al. 2004; Arcone et al. 2005).

- Highly resolved temporal and spatial volcanic event records, and identification of stratospheric versus tropospheric source volcanic emission input pathways to Antarctica and utilization of stratospheric source events as evidence of emission plume history over the ice sheet (e.g. Dixon et al. 2004; Kurbatov et al. 2006).

- Differentiation of the relative influence of sea salt spray and salt flowers on Na⁺ loading over Antarctica (e.g. Kaspari et al. 2005).

- Instrumental record calibrated proxies using ice chemistry and isotope tracers from multiple ice

Integration of ITASE spatial records with deep ice core records to significantly refine paleoclimate reconstructions and other global scale abrupt climate change correlations (e.g. Mayewski et al. 2004, 2005; Shulmeister et al. 2004; Mayewski and Maasch 2006).

Proxies for sea ice extent, a critical component in the climate system, through studies of sulfur compounds (e.g. Dixon et al. 2005).

The “Solar Polar” hypothesis for the initiation of annual to decadal scale climate variability over Antarctica and the Southern Ocean and potentially for global scale abrupt climate change events (e.g. Mayewski et al. 2005; Maasch et al. 2005).

Definition and understanding of the current state of the Antarctic climate system relative to the last few hundred years (Mayewski and Maasch 2006; Schneider et al. 2006; Mayewski et al. 2009).

Large-scale calibrations between satellite observations, surface snow properties, and ITASE ice core proxies for temperature (e.g. Schneider and Steig, 2002; Schneider et al. 2004, 2005; Steig et al. 2008; Koenig et al. 2007; Winebrenner et al. 2004).

ENSO - sea ice connections utilizing ice core sulfur chemistry over the Ross Sea embayment region (e.g. Meyerson et al. 2002).

Partitioning of the sources of sulfate using sulfur isotopes as an aid to further refining air mass trajectory fingerprinting and the sulfur cycle over Antarctica (Pruett et al. 2004).

Site selection for potential new deep drilling projects (e.g. Jacobel et al. 2005; Conway et al. 2005).

Documentation of the impact of solar forcing (via UV induced changes in stratospheric ozone concentration) on zonal westerlies at the edge of the polar vortex (Mayewski et al. 2005; Bertler et al. 2006b).

Distribution of snow precipitation over the Antarctic continent on varying spatial and temporal scales and dependence on wind and surface slope (e.g. Spikes et al. 2005).

Production of a global array of high resolution, multi-proxy records of Holocene climate (e.g. Mayewski et al. 2004; Maasch et al. 2005).

Compilation of an Antarctic wide array of glaciochemical and isotopic data (e.g. Bertler et al. 2006b; Masson-Delmotte et al. 2008).

Comparison between ITASE climate proxies and model results (e.g. Gentron et al. 2005; Schneider et al. 2006; Monaghan et al. 2006; Schneider and Noone, 2007).

Refined estimates of Antarctic surface mass balance (Monaghan et al. 2006; Gentron et al. 2005).

CONCLUSIONS

The 21-nation ITASE effort has made highly notable advances in the understanding of Antarctic climate variability and raised the bar on the previous standards of ice core research. Several countries have focused through ITASE and their national and international deep ice coring efforts on West and East Antarctica yielding superb climate records extending back in time 850,000 years and a new program promises a record that will extend back at least one and possibly more than two million years.

The Antarctic Peninsula has experienced the greatest recent changes in climate as demonstrated by a broad range of investigations (e.g. glaciology, meteorology, biology, oceanography). Ice core reconstructions conducted by several national and multi-national programs (e.g. Brazil, Chile, China, United Kingdom, and United States) on the Antarctic Peninsula and surrounding regions begin to demonstrate the evolution of recent climate change in this region. A relatively new multi-national effort (CASA – Climate of Antarctica and South America) including Brazil, Chile, New Zealand, and the US offers significant promise for deep ice coring climate reconstructions on the northernmost suitable ice coring site on the Antarctic Peninsula, the Detroit Plateau. This site in conjunction with the recently completed deep ice core on James Ross Island produced by the UK are essential to understanding past, present and future climate change in the highly critical interface between Antarctica and South America (Fig. 2).
Fig. 2. (a)–(c) The first three EOF modes of monthly area-weighted 850-hPa pressure surface height anomalies (plotted as correlations). The data were reduced by sampling every third point in the zonal direction (7.5°) between 82° and 30°S and then normalized by cosine of latitude, prior to the decomposition, in order to ensure a equal area representation. The cosine latitude factor was multiplied back to the pattern prior to display. (d)–(f) The principal component of the three EOFs (SAM, PSA-1, and PSA-2, respectively) are given in geopotential meters. The principal component time series PSA-1 and PSA-2 are shown together with scaled Niño-3 SST anomalies (yellow) for reference to ENSO. Taken from Thompson and Solomon (2002).
It is clear that the geography of the Antarctic Peninsula and southern South America exert significant influences on atmospheric circulation in the Southern Hemisphere and that this region is particularly sensitive to climate change.

LITERATURE CITED


Schneider, D. & E. Steig 2002. Spatial and temporal variability of Antarctic ice sheet micro-


